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1 Introduction  

 

This deliverable addresses the first step in the generation of real-time high-quality depth maps using 
RGB conventional cameras. To do so, MPEG-I (Immersive) Depth Estimation Reference Software 
(DERS) [DERS] and MPEG-I Immersive Video Depth Estimation (IVDE) [IVDE] are analyzed and 
refactorized, as they are going to be the basis of the HoviTron software. These applications aim at 
producing high-quality depth maps, with processing times far from the real-time constraints required 
in HoviTron. Consequently, their quality results and processing times will be considered, initially, as 
higher bounds. The analysis and refactorization, hence, will be employed to find and isolate the 
different stages included in the applications. In the future work of HoviTron, these stages will be 
accelerated according to a trade-off research in terms of quality and processing time. 

 

Along with DERS and IVDE, MPEG-I specifies common test conditions that ensures the correct 
evaluation of new tool proposals. They include test material, i.e., multi-view RGB sequences, as well 
as a common procedure to assess the quality and the processing time. In this deliverable, MPEG 
common test conditions have been used to perform the analysis of the tools, however, during the 
project, and beginning with this document, a new set of HoviTron test conditions will be developed. 
In this context, and addressed in this deliverable, one of the first decisions to make is the number of 
cameras and the shape of the HoviTron multiview camera array. 
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2 State of the Art Software 

HoviTron real-time software will find its foundation in two MPEG-I applications: DERS and IVDE. In this 
section, they are analyzed and divided into interconnected stages. This study is needed for the 
implementation of a software that includes accelerated stages of DERS, IVDE or both. 

 

2.1 Depth Estimation Reference Software (DERS) 

DERS [DERS] has been the reference software for depth estimation in MPEG-I explorative experiments 
until October 2020, with contributions of many developers across the years. Due to continuous 
updates, which are still happening at this moment, DERS is in its nineth version, which can 
demonstrate that this software is one of the current state of the art tools.  

 

DERS is an application that uses as input two or more cameras along with its camera parameters, 
intrinsic and extrinsic, to produce a depth map in the position of one of these cameras, which is called 
reference camera. To do so, it also needs a configuration file, where not only the camera files are 
provided, but it also contains several user-configurable parameters that can vary the output result in 
different ways. The adjustment of these parameters requires a knowledge of the inner stages of the 
software, hence, DERS also includes a user manual [DERS-Manual].  

 

After the analysis and refactorization of DERS, seven main stages were found. They can be seen in 
Figure 1 and divided into three groups: initialization, in green, auxiliary processes, in gray, and core, in 
blue. In addition, four of these stages, in dashed lines, are optional. 

 

 

Figure 1. DERS block diagram. 

 

 

The explanation for every stage is the following: 

 

1) Read Cameras: parses the configuration file, reads camera textures and camera parameters and 
performs some initialization operations. 

2) Interpolation: (optional) interpolates the images read in the previous stage by a user-defined 
factor. 

3) Reliability Map: (optional) using the reference camera as input, this stage produces a vertical and 
horizontal reliability map that will be used in the homography stage. In these maps, each pixel is 
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the average of the horizontal or vertical absolute differences in a neighbor area of 3×3 pixels and 
scaled by a user-defined parameter. These maps provide an idea of the texture level in the 
surroundings of every pixel, since in areas with low level of texture, the depth estimation is more 
difficult.  

4) Motion Flag: (optional) in this stage, the current frame of the reference camera is compared with 
the previous one, to obtain a binary mask. This mask will be used both in the homography and 
graph cuts stages to update only the pixels that have changed since the previous frame. 

5) Smoothing Map: (optional) this stage is similar to the reliability map mentioned before. It 
produces vertical and horizontal maps, where every pixel indicates the level of continuity in a 
neighbor window of 3×3 pixels. As well as the reliability map, this value is scaled by a user-defined 
parameter. These maps are used in the graph cuts stage. 

6) Homography L1: this stage uses the geometrical information found in the intrinsic parameters (K 
matrix) and extrinsic parameters (R|t matrix) as well as their corresponding images to produce 
an initial cost cube. To do so, it relies on the sweeping plane algorithm, depicted in Figure 2. 
Firstly, the 3D space is bounded between a Znear and a Zfar plane, in the z axis, and divided into 
Ncandidates planes (in black). Then, a ray between the optical axis of the reference camera and a 
pixel (I,j) is created (in red). The intersection of this ray and the intermediate planes leads to a set 
of 3D points denominated Zcandidates, which will be all the possible depth values for the pixel(I,j) (in 
blue). Finally, these points are projected in another camera, producing the pixel candidates for 
the reference pixel(I,j) (in green). This process is implemented using the homography matrix in  
Equation 1. Once the candidates are calculated, they are compared with the reference camera 
using a Sum of Absolut Differences (SAD) in a 3×3 spatial window. The result is a cost for every 
pixel and candidate, which is represented as a cost cube, where x and y are the spatial dimensions 
of the reference camera, and z is a depth candidate. In addition, if the reliability map was 
generated and depending on the dominant direction of the camera pair, the vertical or horizontal 
reliability map is used to scale the initial cost cube. This process is repeated for the surrounding 
cameras, creating a new pair reference-secondary camera for every one of them, and keeping in 
the cost cube the minimum cost values. In this way, the minimum cost for every pixel and depth 
in the surrounding cameras is retained in the cost cube.

 

Figure 2. Sweeping plane algorithm. 

 

Equation 1. Homography matrix. 
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7) Graph Cuts: starting from the cost cube generated in the homography stage, Graph Cuts aims at 
obtaining the optimal depth map, given that (i) a pixel is likely to have the depth assigned to the 
smallest candidate cost and (ii) that similar color regions normally have akin depth values 
(without large depth differences). These constraints are formulated in Equation 2 as the energy 
function to minimize. 

 

 
 

Equation 2. Graph cuts energy function. 

 

 Where f is a labelling, i.e., a depth map, that produces a specific energy value, P are the image 
pixels and N is a neighborhood of pixels. The first term, the data term, measures the energy of 
assigning one pixel to a certain depth using the information from the initial cost cube. The second 
term, the smoothing term, measures the energy of assigning one pixel to a certain depth given 
its similarity to its neighborhood, by means of the smoothing map and the labelling of the 
neighbor pixels. Graph cuts uses a graph structure to solve this energy minimization problem, and 
it is implemented through Kolmogorov et al. library [Graph-Cuts]. 

 

It is important to remark that DERS is a view-output oriented application, which means that one 
instance of the program will produce only one output view (the reference camera one). This entails 
that, if a depth map for every camera in the dataset is necessary (which is common), the number of 
DERS instances needed will be the same as the number of cameras. Consequently, as these processes 
are independent, they can be executed in parallel. 

 

2.2 Immersive Video Depth Estimation (IVDE) 

IVDE [IVDE] has become the reference software for depth estimation in MPEG-I explorative 
experiments in the last months, after competing during a period with DERS. As MPEG-I experts 
considered this tool to be more suitable for depth experiments, HoviTron consortium decided to 
evaluate it, as it may be interesting for the project. 

 

IVDE’s analysis and refactorization has resulted in eight main stages represented in Figure 3. They are 
grouped in two main blocks: initialization, represented in green, and the core of the depth estimation, 
represented in blue.  
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Figure 3. IVDE block diagram. 

 

1) Read Cameras: loads the configuration parameters and carries out initialization tasks. 
2) Extract Superpixels: performs the segmentation of the image in superpixels. Initially, the 

image is divided into a grid of a fixed number of superpixels. These segments are shaped 
according to the color and spatial distance between the image pixels and the center of their 
neighbor superpixels. 

3) Calculate Temporal Consistency: compares segments between consecutive frames to mark 
unchanged ones. For the first frame (I-type), depth is estimated for all the segments. In the 
following frames (P-type), the depth is calculated only for those segments marked as changed. 

4) Intra-View Cost: calculates the cost between neighbor segments in the same view according 
to the following equation: 

𝑉𝑠,𝑡(𝑑𝑠 , 𝑑𝑡) = 𝛽 ∙ |𝑑𝑠 − 𝑑𝑡| 

 
Where 𝑑𝑠 and 𝑑𝑡 are the currently considered depth of the segment s and its neighbor t. The 
smoothing coefficient 𝛽 is previously calculated as the L1 distance between the average YCbCr 
components of a segment and its neighbor according to the expression: 

 

𝛽 = 𝛽0/‖[𝑌̂ 𝐶̂𝑏 𝐶̂𝑟]𝑠 − [𝑌̂ 𝐶̂𝑏 𝐶̂𝑟]𝑡‖
1

 

 

Where 𝛽0 is a user-defined parameter. 

 

5) Inter-View Cost: calculates the cost between a segment and its corresponding segment from 
a neighbor view as the average of the L1 norm inside a given window. The calculation is 
performed according to: 

 

𝑚𝑠,𝑠′(𝑑𝑠) =
1

𝑐𝑜𝑢𝑛𝑡(W)
∑ ‖[𝑌𝐶𝑏𝐶𝑟]𝜇𝑠+𝑤 − [𝑌𝐶𝑏𝐶𝑟]𝑇[𝜇𝑠]+𝑤‖

1
𝑤∈W

 

 
Where 𝜇𝑠  is the vector of coordinates with centre in segment s, 𝑇[𝜇𝑠] is the transformed 
segment according to the cameras parameters and 𝑤 is the vector of coordinates of a point 
inside the given window W. The final inter-view cost is calculated through: 
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𝑀𝑠,𝑠′(𝑑𝑠) = {
min {0, 𝑚𝑠,𝑠′(𝑑𝑠) − 𝐾} 𝑖𝑓 𝑑𝑠 = 𝑑𝑠′

0 𝑖𝑓 𝑑𝑠 ≠ 𝑑𝑠′
   

 

Where 𝑑𝑠′ is the currently considered depth for the respective transformed in the neighbor 
view of the segment s. 

6) Graph Cuts: performs the minimization of the energy function that results from the 
combination of the intra-view (𝑉𝑠,𝑡(𝑑𝑠 , 𝑑𝑡)) and inter-view (𝑀𝑠,s′(𝑑𝑠)) costs: 

 

𝐸(d) = ∑ ∑ { ∑ 𝑀𝑠,s′(𝑑𝑠)

𝑐′∈D

+ ∑ 𝑉𝑠,𝑡(𝑑𝑠 , 𝑑𝑡)

𝑡∈T

}

𝑠∈S𝑐∈C

 

 
Graph cuts in IVDE is also implemented through Kolmogorov et al. library [Graph-Cuts], 
however, to it is parallelized using CPU threads. The basis of the parallelization is that the 
aforementioned library is used iteratively for each depth plane defined to obtain the final 
result. In IVDE, this loop is divided into different threads, in such a way that every thread 
calculates several of the total depth planes. Although this method improves the performance 
for parallel architectures, it also introduces a certain error and the need of the next stage.  

7) Merge Depth Maps: combines the depth estimated by each thread in its range of depth levels 
by repeating the calculation of intra and inter-view costs. This stage will produce the final 
output for Graph Cuts. 

8) Neighbor Segment Analysis: (optional) for each segment in the estimated depth map, 
neighbor segments are taken as candidates (i) if they reduce the inter-cost of the processed 
segment or (ii) if the corresponding segment in a neighbor view has the same value of depth. 

 

As commented in DERS, it is important to remark that IVDE is a dataset-output oriented application, 
which means that one instance of the program will produce a depth map for every camera in the 
dataset. 
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3 MPEG-I 6DoF Common Test Conditions 

In order to test the new tool proposals (or updates) fairly in MPEG-I, there exists a set of common test 
conditions. These test conditions for depth estimation and visual synthesis are further explained in 
this section; including the multiview sequences used as input, the validation chain and the metrics 
involved in the evaluation. 

 

3.1 Test material 

The MPEG-I group counts with several multiview test sequences collected from its members, from 
businesses and universities. They have different properties, which are summarized in Table 1.  

Table 1. Test material. 

Sequence Type Configuration # Test frames Resolution 

Orange 

Shaman 
Synthetic Square 5×5 17 1920×1080 

Orange 

Dancing 
Synthetic Arc 14×3 17 1920×1080 

Orange 

Kitchen 
Synthetic Square 5×5 17 1920×1080 

Technicolor 

Painter 
Natural Square 4×4 17 2048×1088 

Intel 

Frog 
Natural Line 1×14 17 1920×1080 

ULB 
Toys 

Natural Square 5×5 1 1920×1080 

ULB  
Chocolat 

Natural Rectangle 3×5 17 1856×1032 

Poznan 

Fencing 
Natural Line 1×10 17 1920×1080 

 

3.2 Validation chain 

Most of these sequences do not count with depth maps to compare with, hindering their objective 
evaluation. As a result, MPEG-I group developed a validation chain inspired by the final goal of the 
depth maps: its introduction in immersive systems. The chain, as depicted in Figure 4, shows that first, 
for every camera in the dataset, a depth map is generated using a depth generation tool, namely DERS 
or IVDE. Then, using a view synthesis tool such as Versatile Video Synthesizer (VVS) [w18172] or 
Reference View Synthesizer (RVS) [w17759], a synthesized view is generated in the position of the real 
cameras, taking into consideration the information only of its neighbor cameras. In Figure 4, camera 
4 is highlighted to remark that for generating a synthesized view in its position, both RGB images and 
depth maps of the neighbor cameras are used (but not the information of camera 4). 
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Figure 4. MPEG Validation Chain. 

 

In this way, every camera has a synthesized view that can be compared with the image from the actual 
camera, which can be converted to an objective quality measurement. Considering that the 
synthesized views are highly dependent on the depth maps, this strategy can be used to evaluate 
depth estimation tools. 

 

3.3 Metrics 

Once every camera in the dataset has a corresponding synthesized view, there is a need to use a metric 
to find out the objective quality of the synthesized images. After obtaining the objective quality in a 
frame and view, all these views and frames are averaged to obtain a single value per dataset. In MPEG-
I, the objective quality metrics are the following [w19221]: 

 

1. Weighted Spherical PSNR (WS-PSNR) [w18069]: a PSNR where every pixel (I,j) has associated a 
weight based on the spherical area covered in that position, depending on its projection plane. It 
is calculated as: 

 

𝑊𝑀𝑆𝐸 =
1

∑ ∑ 𝑤(𝑖, 𝑗)𝑁−1
𝑗=0

𝑀−1
𝑖=0

∑ ∑ (𝑦(𝑖, 𝑗) − 𝑦(𝑖, 𝑗))
2𝑁−1

𝑗=0

𝑀−1

𝑖=0
× 𝑤(𝑖, 𝑗), 

 

𝑊𝑆 − 𝑃𝑆𝑁𝑅 = 10log
𝑀𝐴𝑋𝐼

2

𝑊𝑀𝑆𝐸
, 

 

For calculating WS-PSNR in equirectangular projections (ERP), the weights are the following: 

 

𝑤(𝑖, 𝑗)𝐸𝑅𝑃 = 𝑐𝑜𝑠
(𝑗 + 0.5 − 𝑁/2)𝜋

𝑁
, 

 

2. Immersive Video PSNR (IV-PSNR) [w18709]: a variation of PSNR for immersive video 
applications. Its two main differences are (i) Corresponding Pixel Shift and (ii) Global Color 
Difference. Corresponding Pixel Shift eliminates the influence of a slight shift of objects’ edges 
caused by reprojection errors. Global Color Difference reduces the influence of different color 
characteristics of different input views. It is calculated for YUV images as: 

 

𝐼𝑉𝑃𝑆𝑁𝑅𝑌𝑈𝑉 =  
∑ 𝐼𝑉𝑃𝑆𝑁𝑅(𝑐) ∙ 𝐶𝐶𝑊(𝑐)2

𝑐=0

∑ 𝐶𝐶𝑊(𝑐)2
𝑐=0

, 

 

 where CCW(c) is the Color Component Weight for each color component c and IVPSNR(c) is: 
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𝐼𝑉𝑃𝑆𝑁𝑅(𝑐) = 10 log (
𝑀𝐴𝑋2

𝐼𝑉𝑀𝑆𝐸(𝑐)
) , 

 

 

IVMSE(𝑐) =
1

𝑊 ⋅ 𝐻
∑ ∑ min

𝑥𝑅∈[𝑥−CPS,𝑥+CPS]

𝑦𝑅∈[𝑦−CPS,𝑦+CPS]

 (𝑐𝑇(𝑥, 𝑦, 𝑐) − 𝑐𝑅(𝑥𝑅 , 𝑦𝑅 , 𝑐) + GCD(c))2, 

𝑊−1

𝑥=0

𝐻−1

𝑦=0

  

 

where W and H are width and height of the image, cT (x,y,c) and cR (x,y,c) are values of color 
component c in the position (x,y) in the test image and the reference image, respectively, CPS is 
the maximum Corresponding Pixel Shift between reference and test image, and GCD is the Global 
Color Difference for component c: 

 

GCD(𝑐) = max (
1

𝑊 ⋅ 𝐻
∑ ∑ (𝑐𝑅(𝑥, 𝑦, 𝑐) − 𝑐𝑇(𝑥, 𝑦, 𝑐)) 

𝑊−1

𝑥=0

𝐻−1

𝑦=0

, MUD(𝑐)) , 

 

where MUDI is the Maximum Unnoticeable Difference for color component c. 

CCWI, MUDI and CPS values are predefined. Typical values are: 

• CCWI: 
o CCW(0)=1  (luma component), 
o CCW(1)=0.25 (1st chroma component), 
o CCW(2)=0.25 (2nd chroma component), 

• MUDI = 1% for all the color components, 

• CPS = 2. 

 

3. Video Multimethod Assessment Fusion (VMAF) [VMAF]: an objective metric which combines 
three elementary quality metrics (Visual Information Fidelity, Detail Loss Metric and Motion). A 
Support Vector Machine (SVM) regression algorithm is employed to weight each elementary 
metric. 

 

In addition, subjective quality results are also required to complement the evaluation. These results 
consist of the generation of synthesized video sequences that simulate the movement of a camera 
across the data-set. These sequences are then evaluated subjectively by the experts in the group. 

 

Another important aspect to measure is the processing time of the depth estimation tool. In this 
regard, in MPEG-I, only the average time per view is considered. 
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4 Anchor Results 

In order to test DERS and IVDE (described in Section 2), the common test conditions for MPEG-I 
explorative experiments in depth estimation (reported in Section 3) were followed to obtain the 
results in Table 2, using VVS 2.0 as synthesis tool. These results were computed in Centro de 
Supercomputación y Visualización de Madrid (CeSViMa), a super-computer with 68 nodes, each one 
with two Intel Xeon Gold 6230 20 cores @ 2.10 GHz, 192 GB RAM and 480 SSD disk. This platform is 
chosen given the number of data to process, taking into account that every sequence counts with 
between 10 and 42 views, with 17 frames (except ULB Unicorn A) every one of them. Consequently, 
and due to its type of output, DERS uses a number of independent cores equal to the number of views 
in the test. In the case of IVDE, and given its functioning, every sequence uses 10 cores to process all 
the views in the dataset. The configuration files used to obtain these results are found in Annex A. 

 

This study is two-fold, (i) it is a comparison between DERS and IVDE, which also provides a higher 
bound limit for objective quality and processing times (for MPEG-I sequences), and (ii) it is the 
reference camera setup to compare with, in Section 6.  

Quality and processing time results are further explained in the following subsections. 

 

Table 2. Anchor results. 

Sequence Tool WS-PSNR 

Y (db) 

WS-PSNR  

U (dB) 

WS-PSNR  

V (dB) 

IV-PSNR 

(dB)  

VMAF Av. 

Time 
(s) 

Global 
Delay  

(s) 

Orange 

Shaman 

DERS 39.12  48.83  46.93  44.13  82.80  14266  18302 

IVDE 37.93  48.30  46.31  44.55  79.77  1373  34318 

Orange 

Dancing 

DERS 32.84  49.86  51.45  42.05  78.65  6987  8135 

IVDE 31.05  48.77  50.81  40.81  74.55  1011  42474 

Orange 

Kitchen 

DERS 31.94  46.65  49.59  40.13  81.72  8429  10310 

IVDE 31.37  46.92  49.74  40.11  80.33  1182  29548 

Technicolor 

Painter 

DERS 35.30  46.80  46.92  43.43  85.81  15353  21176 

IVDE 34.71  46.58  46.67  42.86  84.57  2597  41556 

Intel 

Frog 

DERS 28.03  42.11  40.99  37.98  73.40  21382  26300 

IVDE 27.22  41.61  39.89  37.26  71.89  2850  37046 

ULB 

ToysTable 

DERS 27.34  43.43  43.50  37.62  79.38  1221  19796 

IVDE 25.21  42.19  42.53  35.34  72.43  189  44263 

ULB 

Chocolat 

DERS 27.82  38.66  37.79  35.20  66.86  15446  19796 

IVDE 27.84  38.64  37.72  35.01  68.21  2950 44263 

Poznan 

Fencing 

DERS 28.20  45.08  41.39  36.64  59.56  24450  28825 

IVDE 25.66  43.64  40.66  36.12  49.06  2596  25962 
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4.1 Objective quality results 

The objective quality results can be better visualized in Figure 5, Figure 6 and Figure 7, with a 
representation of WS-PSNR Y, IV-PSNR and VMAF, respectively, for every sequence and for both tools. 

 

 

Figure 5. WS-PSNR Y Anchor Results. 

 

Figure 6. IV-PSNR Anchor Results. 

 

Figure 7. VMAF anchor results. 

 

 

 

 

0
5

10
15
20
25
30
35
40
45

WS-PSNR Y (dB)

DERS

IVDE

0

10

20

30

40

50
IV-PSNR (dB) 

DERS

IVDE

0

20

40

60

80

100

VMAF

DERS

IVDE



D2.1 – Test conditions and refactorization 31/12/2020 
 

HoviTron  H2020-ICT-2019-3  GA-951989                     © HoviTron Consortium Page 13 

The objective quality results show that, in general, DERS obtains slightly better results than IVDE. The 
average results can be shown in Table 3, where the same tendency is observed. 

 

Table 3. Average anchor results. 

Average WS-PSNR Y IV-PSNR VMAF 

DERS 31.32 dB 39.64 dB 76.02  

IVDE 30.12 dB 39.00 dB 72.60 

 

 

4.2 Subjective quality results 

In order to show the subjective differences between both applications, the detail of two sequences 
(Orange Kitchen and ULB Toys Table) are included. They can be seen in Figure 8 and Figure 9, 
respectively. First row is DERS and second row is IVDE. The first column is the original sequence, the 
second column the depth map, and the third column the synthesized view 

 

 

 

Figure 8. Orange Kitchen detail. The first row is DERS and the second row is IVDE. The first column 
is the original sequence, the second column the depth map, and the third column the synthesized 

view. 
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Figure 9. ULB Toys Table detail. The first row is DERS and the second row is IVDE. The first column 
is the original sequence, the second column the depth map, and the third column the synthesized 

view. 

 

4.3 Processing time results 

Processing time results can be observed in Figure 10 and Figure 11. While Figure 10 presents the 
average time per view, that is an MPEG-I metric, Figure 11 depicts a new metric, called global delay. 
This metric measures the wall time since all the view computations begin, and until the last one of 
them finishes. In this way, the real time for obtaining all the depth maps in a dataset is obtained, 
considering the possible parallelism at view level. It is important to notice that these times are always 
within a view and for all its frames; this means that times for every sequence except ULB Unicorn A, 
which is not video, comprises 17 frames.  
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Figure 10. Average time per view anchor results. 

 

 

Figure 11. Global delay anchor results. 

 

As can be seen, the average time per view penalizes DERS, which obtains in general one order of 
magnitude larger times. This is due to the fact that DERS is a view-output oriented application, hence 
the application parallelism is not explicitly expressed. In contrast, IVDE is a dataset-output oriented 
application, that is internally parallelized. For this reason, the average time per view presented in IVDE 
is the result of dividing the whole application time by the number of cameras in the dataset. 

 

In the global delay case, this large difference is not observed, even obtaining better results in DERS. 
This is the consequence of using a large parallelism in DERS, which was masked in the previous metric. 
For obtaining the results, the same number of views in the dataset was calculated in parallel using 
DERS, meaning that the global delay is the maximum value obtained for all the views. For IVDE, all the 
datasets counted with 10 cores to parallelize the application, and the global delay is the processing 
time of it.  

These results show that, the processing time needed in a scenario where every view can be processed 
by an independent core, is in general lower for DERS. In contrast, when not all the views are assigned 
to independent cores, IVDE clearly obtains better results. 

4.4 Profiling 

In addition to the processing time used by the whole application, some tests were performed to 
determine which is the percentage of time consumed in every stage. Although it is difficult to 
accurately profile the application due to the differences depending on the content and the huge 
number of sequences, views and frames, a brief profiling of DERS is included in Table 4. It includes two 
views for three different sequences. 
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Table 4. DERS Stage profiling. 

Sequence View Read Cameras 

& Interpolation 

Reliability & 
Smoothing 

Map 

Motion 
Flag 

Homography Graph 
Cuts 

OKitchen v0 8.57% 0.12% 0.19% 52.85% 38.26% 

OKitchen v10 6.7% 0.1% 0.2% 50.9% 42.1% 

TPainter v0 3.8% 0.1% 0.2% 44.1% 51.9% 

TPainter v10 4.9% 0.1% 0.1% 58.8% 36.1% 

IFrog v0 2.6% 0.1% 0.2% 49.7% 47.4% 

IFrog V10 3.7% 0.0% 0.1% 63.9% 32.3% 

 

This profiling shows that the Homography and Graph Cuts stages are the bottlenecks of DERS. In 
addition, it is important to remark that Graph Cuts is an algorithm that depends on the content, hence 
producing the variation of percentages for each view in the table above. 

 

For IVDE, a similar profiling is included in Table 5. In this case, the difficulties of profiling arise when 
the application spawns new threads. For this reason, inter-intra cost and graph cuts are grouped in 
the same stage. As expected, this is almost the 100% percent of the time in the process, as it happens 
in DERS for the Homography and Graph Cuts stages joint. 

 

Table 5. IVDE Stage profiling. 

Sequence Read Cameras 

& SuperPixels & Temporal Consistency 

Inter/Intra & 
Graph Cuts  

Merge 
Depth 
Maps 

Neighbors 
Segment 
Analysis 

OKitchen 1.0% 93.5% 4.9% 0.7% 

TPainter 0.8% 93.8% 4.7% 0.7% 

IFrog 2.0% 90.6% 5.8% 1.6% 
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5 Camera Setup Experiment 

5.1 Experiment definition 

As stated in the introduction, this document intends to start with the specification of the HoviTron 
test conditions, beginning with the determination of the setup employed. To do so, this experiment 
shows the behaviour in terms of quality and time for different simulated setups. They are the result 
of reducing the number of cameras for four of the MPEG-I sequences (Orange Shaman, Orange 
Kitchen, Technicolor Painter and ULB Chocolat), going from a 2x2 setup, to the original setup. 

 

5.2 Results 

The results for every camera in DERS and IVDE are presented in the following charts. First, the PSNR-
Y obtained in the different simulated setups (and the full setup), for every sequence, and then, the 
equivalent results for processing time. All the charts show surfaces, where x and y are the position of 
the camera in the real setup and the color represents the value of quality or time. The color scale is 
fixed for every setup in a sequence, helping to contrast differences between setups. 

5.2.1 Quality in DERS 

DERS PSNR-Y charts for Orange Shaman, Orange Kitchen, Technicolor Painter and ULB Chocolat are 
depicted in Figure 12, Figure 13, Figure 14 and Figure 15, respectively. 

 

 

 

Figure 12. DERS OrangeShaman PSNR-Y for every setup. 
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Figure 13. DERS Orange Kitchen PSNR-Y for every setup. 

 

 

 

 

 

 

Figure 14. DERS Technicolor Painter PSNR-Y for every setup. 
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Figure 15. DERS ULB Chocolat PSNR-Y for every setup. 

 

5.2.2 Processing time in DERS 

DERS Processing times in the same order are depicted in Figure 16, Figure 17, Figure 18 and Figure 19 
respectively. 

 

 

Figure 16. DERS Orange Shaman processing time for every setup. 
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Figure 17. DERS Orange Kitchen processing time for every setup. 

 

 

 

Figure 18. DERS Technicolor Painter processing time for every setup. 

 



D2.1 – Test conditions and refactorization 31/12/2020 
 

HoviTron  H2020-ICT-2019-3  GA-951989                     © HoviTron Consortium Page 21 

 

Figure 19. DERS ULB Chocolat processing time for every setup. 

 

 

 

5.2.3 Quality in IVDE 

The results for IVDE are presented in a similar way, however, only for PSNR-Y values, as it is not 
possible to measure individual camera processing times. 

 

PSNR-Y charts for Orange Shaman, Orange  Kitchen, Technicolor Painter and ULB Chocolat are 
depicted in Figure 20, Figure 21, Figure 22 and Figure 23, respectively.  

 

 
 

Figure 20. IVDE Orange Shaman PSNR-Y for every setup. 
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Figure 21. IVDE Orange Kitchen PSNR-Y for every setup. 

 

Figure 22. IVDE Technicolor Painter PSNR-Y for every setup. 

 
 

Figure 23. IVDE ULB Chocolat PSNR-Y for every setup. 
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5.3 Discussion 

In the first place, for the PSNR-Y values and using DERS, it is clear that as the setup grows, in general, 
quality also increases. This is due to the addition of new points of view that help to generate the depth 
estimation and the synthesis. However, this growing only occurs for views where new near cameras 
are added; quality on corners and borders of the setup rarely increases. 

 

Another important fact is the maximum PSNR-Y obtained for every setup, which is summarized in 
Table 6. As it can be seen, the maximum value is almost obtained in a setup of 3x3, with a slight 
variation of PSNR-Y for larger setups. 

 

Table 6. DERS maximum PSNR-Y for setup.  

Sequence 2x2 3x3 4x41 5x52 

OShaman 37.9536 41.0369 41.4213 41.7030 

OKitchen 31.3258 33.2119 34.1138 34.2954 

TPainter 36.3304 36.5759 36.7475 - 

UChocolat 27.8012 30.7380 31.0091 31.0130 

 

This is also observed for IVDE, however, the differences between borders and central cameras are less 
pronounced, due to its inter-view consistency. It can be seen in Table 7. 

Table 7. IVDE maximum PSNR-Y for setup. 

Sequence 2x2 3x3 4x41 5x52 

OShaman 36.6482 39.132 39.8419 39.9869 

OKitchen 30.7075 33.2155 34.6067 34.5065 

TPainter 35.675 36.4936 36.3297 - 

UChocolat 27.999 30.5953 30.7739 30.8434 

 

 

 

An additional experiment was conducted due to the results obtained in the tables above. As the 
processing time depends on the number of cameras, in HoviTron it is expected to use the smallest 
setup with the better quality. This leads to the 3x3 setup; however, it may be possible that results for 
2x2 setups are masked as there is not a camera in the center of the array and hence, its quality cannot 
be measured. For this reason, a special simulated setup was considered: starting from a 3x3 setup, 
only the 4 corner cameras are considered to produce the depth estimation and the video synthesis. In 
this scenario, the central camera is synthesized and compared with the actual central camera of the 
3x3 setup, obtaining an objective quality measurement for the central camera of the 2x2 setup.  

 

This is depicted in Figure 24 and Figure 25 for DERS and IVDE, respectively, and using the same scale 
as in the previous charts (minimum and maximum for all the setups). In this way, it is possible to realize 
that the quality in the central camera is similar to the ones in the corners, not following the same 
tendency found in 3x3 setups. 

 

1 For UChocolat, the setup is 3x4, as the original setup is 3x5. 

2 For UChocolat, the setup is 3x5, as the original setup is 3x5. For TPainter, there is not 5x5 setup as the original setup is 4x4. 
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Figure 24. DERS special setup PSNR-Y. 

 

 

 

Figure 25. IVDE special setup PSNR-Y. 

 

Regarding processing times, the general rule is that the processing time will follow a linear function 
with the number of cameras (although it can be masked in a parallel architecture for DERS). However, 
the time per camera is, at least in DERS, not constant. As depicted in the previous charts, it oscillates 
around a 40%, and it completely depends on the content of the camera. Although some borders or 
corners use less points of view, their processing time is not necessarily lower. This is due to Graph 
Cuts, which is independent to the number of neighbor cameras and it is a convergent process that 
depends on the content. 
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6 Acceleration prospects and planning 

The previous study allows to plan the acceleration procedure that would achieve the real time 
constraint set in HoviTron. As explained, HoviTron application will find its basis on DERS, IVDE or a 
combination of both, therefore these applications will be used as a higher bound of quality and 
processing time. 

 

As these processes are intended for processing images, the first accelerator architecture to think on 
is a Graphics Processing Units (GPU). Using this architecture presumably would obtain faster results 
relying on massive parallelism, which normally addresses independent processing element to different 
pixels. 

 

In this regard, members of HoviTron have conducted experiments accelerating DERS, generating an 
application denominated GoRG [GoRG]. This application achieves an acceleration of approximately 
x25 times at a cost of, in average, 1.6 dB in PSNR-Y quality. This acceleration moves the average 
processing time of one frame in DERS from around 500 seconds to 20 seconds, considering the 
platform used in these experiments. However, preliminary tests performed with a newer platform 
(NVIDIA RTX 3090), revealed that these times can be decreased to the half, approximately. 

 

The aforementioned work relies on a state of the art library to process Graph Cuts, CUDA Cuts [CUDA 
Cuts], which introduces quality losses and is the bottleneck of GoRG, with more than 95% of processing 
time. For these reasons, using a better implementation of Graph Cuts, for example JF-Cuts [JF-Cuts], 
is expected to decrease both the quality losses (completely) and the processing times (in a factor of 
around x10, according to its work). 

 

Another acceleration strategy comes from one of the ideas in IVDE. If pixels are grouped into 
superpixels, the number of calculations can be decreased severely, at the cost of some quality. If 
150.000 super pixels are considered, which is the parameter used in IVDE for the experiments in this 
work, the size of a full HD image (1920x1080) can be decreased in a factor of around 14; presumably 
achieving another magnitude order of speed-up. 

 

Finally, as introduced by Senoh et. al. [m54255], it is possible to divide Graph Cuts into smaller blocks 
and then fuse these segments with a small loss of quality, processing faster and in a parallel way. This 
acceleration is also expected to improve the results drastically, as Graph Cuts is the main bottleneck 
in the GPU accelerated version. 
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7 Conclusions 

This document describes the applications that will be the basis of the HoviTron software: DERS and 
IVDE, analyzing their stages and providing anchor results for the experiments. In addition, it includes 
results for simulated setups that will be considered when defining the HoviTron setup. Finally, a brief 
discussion on the acceleration of the tools is given. 

 

In the first place, when analyzing DERS and IVDE, it is observed that these applications share a common 
structure, where the images are first compared to other views to obtain an unrefined cost cube, and 
then, Graph Cuts is used to produce the final depth map. The main functional differences are that, 
unlike DERS, (i) IVDE does not consider singular pixels, but superpixels and (ii) IVDE performs an 
adjustment based on the coherency inter-view. In addition, IVDE uses different threads to parallelize 
Graph Cuts. Results show that objective quality is similar for both tools, although slightly worse in 
IVDE. In the case of processing time, IVDE achieves better processing times if the number of cores 
employed to accelerate is lower than the number of views. 

 

In the second place, simulated setup results showed that setups with only 2x2 cameras achieve 
substantially worse results than larger setups. As the quality increment when moving from 3x3 to a 
larger setup is not remarkable, it is recommended to employ a 3x3 setup in HoviTron. This setup may 
have included the plenoptic camera in the central position. 

 

Finally, in terms of acceleration, it is clear that the analyzed tools are far away from real time 
processing, with times in the order of hundred of seconds. However, its parallelization in a GPU 
following different strategies seems promising. 
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9 List of Annexes 

[Annex A] Configuration files for DERS and IVDE. 

 


